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This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis.
Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying
degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals.
Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new
causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics
of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep
learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations
among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality,
surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences
were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human
Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant
association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function,
making them potential biomarkers for further analysis of Alzheimer’s disease.

Key words: time series simulation; frequency-domain NC; deep learning; Alzheimer’s disease; efficiency network.

Introduction
Alzheimer’s disease (AD) is a pressing issue affecting the elderly
population worldwide. It serves as a focal point for research in
diverse fields such as neuroscience, brain-like computing, and
artificial intelligence. AD is characterized by irreversible struc-
tural atrophy and functional decline in the brain, encompassing
a range of cognitive impairments from mild cognitive impair-
ment in its early stages to a diagnosis of AD. The disease entails
comprehensive degradation of various abilities, including vision,
hearing, language organization, comprehension, behavioral plan-
ning, and social activities (Hajamohideen et al. 2023; Mulyadi
et al. 2023; Zhang, Zhao, et al. 2023b). Given the irreversibility and
severe consequences of AD, accurate prediction and early-stage
intervention are crucial, necessitating the utilization of scientific
technologies such as neuroimaging (Franciotti et al. 2023) and
genetics (Stevenson-Hoare et al. 2023). These approaches not only
contribute to AD research but also lay the groundwork for a
profound understanding of the intricate workings of the brain,
which remains the most complex and enigmatic organ to date.

In clinical practice, subjective assessments of patients’ cogni-
tive abilities are typically conducted using various psychological
assessment scales (Lanctôt et al. 2024), such as the Clinical
Dementia Rating (CDR) or the Mini-Mental State Examination

(MMSE). With the rapid advancement of neuroimaging technology,
researchers are increasingly turning to brain imaging techniques
to observe the brain; explore regular changes in brain structure,
function, connectivity, and metabolism; and elucidate the patho-
genesis of cognitive neurological disorders. For instance, Harrison
et al. (2020) conducted a systematic review of 37 studies on AD
employing diffusion magnetic resonance imaging data, summa-
rizing the relationships among risk genes, decreased anisotropy,
and increased diffusivity in the disease. Similarly, Planche et al.
(2022) conducted a longitudinal study using magnetic resonance
imaging (MRI) data from hundreds of AD patients, revealing
significant volume shrinkage in multiple regions such as the
hippocampus, amygdala, temporal lobe, and thalamus. Addi-
tionally, Corona-Long et al. (2023) recruited cognitively normal
older adults, individuals with subjective cognitive decline (SMC),
and mild cognitive impairment patients from the Alzheimer’s
Disease Research Center (ADRC) database. After MRI scanning,
they discovered significant differences in the volume of the
insular cortex between cognitively normal older adults and
patients with mild cognitive impairment, as well as significant
differences in the volume of Brodmann area (BA) 36 between
control participants and patients with mild cognitive impairment.

Apart from directly utilizing brain imaging data as the research
focus, numerous theoretical approaches employ graph theory
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to construct complex brain network structures that represent
the structural connectivity and functional communication char-
acteristics of the brain (Matsui and Yamashita 2023). In this
regard, a common approach involves initially partitioning the
brain into cortical or subcortical regions and subsequently calcu-
lating the correlations or causality between functional magnetic-
resonance-imaging (fMRI) blood-oxygen-level-dependent (BOLD)
signals in each region to form an N × N brain connectivity matrix.
N represents the level of detail in brain parcellation, encompass-
ing common parcellation schemes such as BAs (Berron et al. 2021),
Automated Anatomical Labeling (AAL) (Ahmadi et al. 2022), and
the Desikan–Killiany atlas (Sheng et al. 2022). For instance, Hry-
bouski et al. (2023) investigated changes in functional connectivity
within the medial temporal lobe and its immediate functional
neighbors in healthy aging individuals, preclinical AD individuals,
and individuals with mild cognitive impairment or mild AD. They
discovered that the internal connectivity of the anterior and pos-
terior medial temporal lobe networks decreased with age, and as
age increased, the decoupling between the anterior and posterior
segments of the medial temporal lobe increased. The subregions
of the posterior medial temporal lobe, particularly the perirhinal
cortex, exhibited greater susceptibility to age-related functional
loss compared to their counterparts in the anterior medial tem-
poral lobe. Different parcellation methods significantly differ in
terms of the number of brain regions, partitioning criteria, and
acceptance, which are closely linked to the quality of the resulting
brain connectivity matrix. It is worth noting that in 2017, the
Human Connectome Project Multimodal Parcellation (HCP MMP)
(Glasser et al. 2016) proposed by the Human Connectome Project
team at Washington University offered new possibilities for gen-
erating human brain connectivity matrices, enabling researchers
to explore the functional connections between human cognitive
abilities and a greater number of subregions in high-quality, fine-
grained, and multimodal brain parcellations (Schrouff et al. 2018;
Jitsuishi and Yamaguchi 2022).

In addition to correlation-based brain connectivity matrices,
there is also research (Mohammadian et al. 2023) suggesting
the application of causality analysis methods to elucidate the
directionality of communication between different brain regions,
aiding in a deeper understanding of the cognitive functional
mechanisms of the brain. For example, researchers Cao et al.
(2024) collected electroencephalogram (EEG) data from three
groups consisting of a total of 60 participants, including healthy
controls (HCs), AD patients, and Parkinson’s disease patients.
They employed five causal connectivity assessment methods,
including partial directed coherence (PDC), generalized partial
directed coherence (GPDC), directed transfer function (DTF), full-
frequency direct transfer function (ffDTF), and Geweke–Granger
causality (GGC), to construct a 23 × 23 brain effective network
for investigation. However, there is currently no widespread
consensus on the comparative performance of various causal
relationship theories in brain science data analysis, particularly
regarding the application of widely used Granger causality (GC)
or GC-like methods from the field of economics in neuroscience.
Some studies (Stokes and Purdon 2017; Barnett et al. 2018) have
pointed out potential flaws in inferring causal relationships
between variables using these methods, raising concerns among
researchers. Hu et al. (2011, 2012) proposed a novel causal rela-
tionship analysis method, the NC method, which demonstrated
its effectiveness in EEG data through theoretical derivation and
simulation experiments, comparing it with GC theory. In previous
research (Wang et al. 2023), we further extended the NC method
to time-domain fMRI data processing and applied it to analyze

brain connectivity data in AD patients. Meanwhile, more studies
indicate the importance of frequency-domain causal modeling
in exploring brain connectivity mechanisms (Xue et al. 2023).
Therefore, in this study, we further integrate the novel frequency-
domain causal relationship approach into fMRI data analysis to
investigate its potential in constructing brain effective networks
and revealing variations in brain region connectivity in individuals
with different levels of cognitive impairment.

Materials and methods
The research method employed in this study is illustrated in
Fig. 1. It consists of two main parts: The upper panel focuses
on mathematical modeling of causal relationships at different
levels between simulated fMRI data with both bivariate and mul-
tivariate settings. The integrated frequency-domain NC method
proposed in this study is utilized to detect the causal direction-
ality and assess the consistency of causal inference results with
ground truth. It is also compared with three other commonly
used frequency-domain causal analysis methods to evaluate their
respective performance.

The lower panel describes the analysis of real fMRI data from
individuals with varying degrees of cognitive impairment to val-
idate the effectiveness of the integrated frequency-domain NC
theory proposed in this study. Additionally, it aims to reveal the
variability patterns of causal topological connectivity and central-
ity among cognitive-related brain regions.

Frequency-domain NC theory
Firstly, the novel frequency-domain causal relationship research
method (NC) proposed by Hu et al. (2012) is introduced. To estab-
lish a mathematical model that captures the mutual influences
among multiple stationary time series with zero mean, we employ
a sophisticated joint regression model, as depicted by Equation (1).
Specifically, let X1,t, X2,t, . . . Xn,t represent n time series variables.
The value of X1 at the current time point is determined by a
weighted combination of its own past values and the past values
of other variables. The model incorporates ηi (i = 1, 2,..., n) as the
noise term or fitting error. The index j varies from 1 to m, where m
represents the lag factor of the time series and can be determined
by computing the Akaike information criterion (AIC) or Bayesian
information criterion (BIC) values. Notably, aφ→ρ,j, where ϕ and
ρ are both within the range [1, n], denotes the weight of the
influence that the time series ϕ exerts on the time series ρ within
the jth lag term.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,t = ∑m
j=1a1→1,jX1,t−j + ∑m

j=1a2→1,jX2,t−j + · · · + ∑m
j=1an→1,jXn,t−j + η1,t

X2,t = ∑m
j=1a1→2,jX1,t−j + ∑m

j=1a2→2,jX2,t−j + · · · + ∑m
j=1an→2,jXn,t−j + η2,t

.

.

.

Xn,t = ∑m
j=1a1→n,jX1,t−j + ∑m

j=1a2→n,jX2,t−j + · · · + ∑m
j=1an→n,jXn,t−j + ηn,t

(1)

In the joint regression model Equation (1), a Fourier transform
is applied to both sides to convert the signals from the time
domain to the frequency domain for analysis, as shown in Equa-
tion (2). In this equation, the frequency of the transformed signal
is denoted by f , and the term aφ→ρ

(
f
)

represents the summation of
aφ→ρ,j multiplied by the complex exponential term e−i2πfj, where ϕ

and ρ belong to the range [1, n], and i refers to the imaginary unit.
Simultaneously, a novel causal relationship termed “propor-

tionate causality” NXi→Xk

(
f
)

is defined by Hu et al. in Equation (3).
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Fig. 1. Research method overview.

It quantifies the proportion of frequency components from time
series Xi that contribute to time series Xk in the frequency domain.
Here, σ 2

ηn(f)
represents the variance of the noise term, and SXiXi

(
f
)

denotes the spectral density of Xi
(
f
)
, where i belongs to the range

[1, n].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(f ) = a1→1(f )X1(f ) + a2→1(f )X2(f ) + · · · + an→1(f )Xn(f ) + η1(f )

X2(f ) = a1→2(f )X1(f ) + a2→2(f )X2(f ) + · · · + an→2(f )Xn(f ) + η2(f )

.

.

.

Xn(f ) = a1→n(f )X1(f ) + a2→n(f )X2(f ) + · · · + an→n(f )Xn(f ) + ηn(f )

(2)

NXi→Xk (f ) =
∣∣ai→k(f )

∣∣2SXiXi (f )∣∣a1→k(f )
∣∣2SX1X1 (f ) + ∣∣a2→k(f )

∣∣2SX2X2 (f ) + · · · + ∣∣an→k(f )
∣∣2SXnXn (f ) + σ 2

ηn(f )

(3)

Simulation experiment design
To further investigate the performance of the novel causal rela-
tionship in frequency-domain analysis of fMRI data, this study
first simulates fMRI BOLD signals and constructs multiple com-
plex multivariate causal relationship models. These models are
then combined with four causal analysis methods in the fre-
quency domain: GC, PDC, relative power contribution (RPC), and
NC. The aim is to examine whether the causal analysis results
obtained by these methods align with the ground truth.

The simulation of the fMRI signals and their causal influences
is carried out using the vector autoregression function (VARM)
in the MATLAB simulation environment. Based on the model-
ing scenarios defined by Equations (4–8), time series consisting
of 10,000 observations are randomly generated. Following the
suggestions by Roebroeck et al. (2005) and consistent with our
previous research (Wang et al. 2023), these time series are con-
volved with a typical hemodynamic response function (canonical
hemodynamic response, TR = 100 ms). Subsequently, the signals
are down-sampled every TR unit to mimic the process of signal
acquisition in fMRI scans. After normalization, Gaussian white
noise with a magnitude of 20% is added to simulate fMRI BOLD
signals.

Scenario 1: strong causality modeling
Based on Equation (4), a mathematical model for a binary causal
relationship is constructed. This model represents a set of rela-
tively strong causal relationships, where the time series X and

Fig. 2. Strong causal mathematical model between binary time series.

Y are influenced by their own past values. Simultaneously, the
past values of variable X have a weighting factor of 0.1 on the
current value of Y. The mathematical relationship between them
is depicted in Fig. 2. The purpose of employing weighting factors of
0.9, 0.1, and 0.01 is primarily to delineate varying degrees of causal
relationships between variables and to manifest such causality
with discernible tendencies. In this scenario, X represents a highly
autocorrelated autoregressive model wherein its past values exert
an influence of 0.9 times on its current value. Conversely, in joint
regression models, Y displays weak autocorrelation at 0.01, while
the past values of X exert an influence on the current value of Y
exceeding Y’s own past values by more than 10-fold. The selection
of weighting factors 0.9, 0.1, and 0.01 aims to accentuate these
influences, maintaining a magnitude above 10-fold, and further
exploration within subsequent methodological comparisons aims
to ascertain which approach can more accurately detect such
associations.

{
Xt = 0.9Xt−1 + ε1

Yt = 0.1Xt−1 + 0.01Yt−1 + ε2
(4)

Scenario 2: weak causality modeling
Using Equation (5), a mathematical model for a set of relatively
weak binary causal relationships can be constructed. In this
model, the time series X is influenced by its own past values with
a weighting factor of 0.9. Additionally, X has a smaller influence
on the current value of time series Y, with a weighting factor of
0.01. Furthermore, Y is also influenced by its own past values with
a weighting factor of 0.1. The specific relationships are illustrated
in Fig. 3. It is referred to as weak causal association because the
influence of X’s past values on Y, originating from X, is reduced
by a factor of 10 (from 0.1 to 0.01) compared to the previous
simulation, placing greater emphasis on the influence of Y’s own
past values.

{
Xt = 0.9Xt−1 + ε1

Yt = 0.01Xt−1 + 0.1Yt−1 + ε2
(5)
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Fig. 3. Weak causal relationships between binary time series.

Fig. 4. Balanced causality relationships between binary time series. Left
(#1): γ = 0.1,right (#2): γ = 0.01.

Fig. 5. Simulation of cyclic causal relationships.

Scenario 3: balanced causality modeling
Using Equation (6), a mathematical model is constructed for two
additional sets of balanced binary causal relationships. In these
relationships, the time series X is influenced by its own past
values with a weighting factor of 0.9, and it exerts causal influ-
ences on the time series Y with weighting factors of 0.1 or 0.01.
Likewise, the time series Y is influenced by its own past values
with weighting factors of 0.1 or 0.01, depending on the strength
of the influence from X. These relationships are referred to as the
“Balanced” scenario in this study. Through these two simulation
experiments, the aim is to evaluate the detection performance
of different methods in capturing causal influences of varying
magnitudes between binary variables, as illustrated in Equation
(6) and Fig. 4. {

Xt = 0.9Xt−1 + ε1

Yt = γ Xt−1 + γ Yt−1 + ε2
(6)

Scenario 4: cyclic causality modeling
In this scenario, a cyclic causal model is constructed for a three-
element time series, as depicted in Equation (7) and Fig. 5. The
time series X, Y, and Z are simulated, with ε representing the error
term. X is an autoregressive time series, influenced solely by its
own past values with a weighting factor of 0.9. Additionally, X
exerts a causal influence on Y and Z with a weighting factor of
0.1 each. Y, in turn, has a causal impact on Z with a weighting
factor of 0.01, while Z influences Y with a weighting factor of 0.1
based on its past values. Both Y and Z are influenced by their own
past values with a weighting factor of 0.01. Thus, the true causal
directions in this simulation are Xt → Yt, Xt → Zt, and Zt → Yt,
with no causal influence from Zt → Xt.

⎧⎪⎨
⎪⎩

Xt = 0.9Xt−1 + ε1

Yt = 0.1Xt−1 + 0.01Yt−1 + 0.1Zt−1 + ε2

Zt = 0.1Xt−1 + 0.01Yt−1 + 0.01Zt−1 + ε3

(7)

Scenario 5: transitive causality modeling
In this scenario, a transitive causal model is constructed for a
three-element time series, as illustrated in Fig. 6. The time series

Fig. 6. Simulation of transitive causal relationships.

X, Y, and Z are considered, where X is influenced by its own past
values with a weighting factor of 0.9. Additionally, X receives a
causal influence of 0.1 from Y. On the other hand, Y influences
both X and Z with a weighting factor of 0.1, in addition to being
influenced by its own past values. Notably, there is no direct
causal effect from X to Z; instead, the causal influence from X to
Z is mediated through Y. Thus, the focus of this simulation exper-
iment is to assess the ability of different methods in accurately
detecting the indirect causal influence from X to Z.

⎧⎪⎨
⎪⎩

Xt = 0.9Xt−1 + 0.1Yt−1 + ε1

Yt = 0.9Xt−1 + 0.1Yt−1 + ε2

Zt = 0.1Yt−1 + 0.1Zt−1 + ε3

(8)

Simulation evaluation
To compare the magnitudes of different causal effects and reduce
the differences caused by varying scales, the study normalizes
the causal value curve of NXi→Xk

(
f
)

in Equation (3). The causality
measure CausalityA→B or CA→B is defined as the area under the
causal influence curve of variable A on variable B. To accomplish
this, the natural logarithm function Z is introduced as defined
in Equation (9). When Z is greater than 0, CA→B > CB→A, and
when Z is less than 0, CA→B < CB→A. If Z is exactly equal to
0, there is no causal influence between variables A and B. The
hyperbolic tangent function (tanh) is then applied to Z to obtain
the normalized causality area under the curve (nCAUC), as shown
in Equation (10). This value maps the causal influence between
variables A and B to the range of [−1, 1], avoiding the computa-
tional difficulties associated with infinite values in the natural
logarithm function. A value of +1 indicates that variable A has
a significantly greater influence on variable B than vice versa,
while a value of −1 indicates that variable B has a significantly
greater causal impact on variable A. The normalized nCAUC value
is independent of the coordinate axes and only depends on the
relative proportions of the causal values, specifically the square
difference ratio.

Z = ln
CausalityA→B

CausalityB→A
= ln

CA→B

CB→A
(9)

nCAUC = tanh (Z) = eZ − e−Z

eZ + e−Z = e
ln CA→B

CB→A−e
−ln CA→B

CB→A

e
ln CA→B

CB→A+e
−ln CA→B

CB→A

=
CA→B
CB→A

− CB→A
CA→B

CA→B
CB→A

+ CB→A
CA→B

= CA→B
2 − CB→A

2

CA→B
2 + CB→A

2

(10)

Application in AD study
Table 1 represents the statistical summary of the cognitive
impairment patient sample information used in this study. In this
study, a total of 1,252 groups of individuals with varying degrees
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Table 1. Description of demographic and clinical factors.

HC EMCI LMCI AD

Total number 575 577 409 266
Male/Female 272/303 321/256 210/199 149/117
Age 72.21 ± 11.61 70.27 ± 8.35 68.97 ± 13.49 73.52 ± 10.97
Education Years 16.13 ± 3.19 16.17 ± 2.89 16.51 ± 3.65 15.57 ± 3.00
CDR 0.04 ± 0.14 0.46 ± 0.19 0.55 ± 0.34 0.89 ± 0.41
MMSE 28.95 ± 1.35 28.15 ± 1.81 26.65 ± 3.41 21.59 ± 3.71
NPI 1.53 ± 4.69 4.11 ± 7.11 5.21 ± 7.67 7.88 ± 9.81
GDS 0.77 ± 1.25 1.92 ± 1.88 1.84 ± 2.05 1.72 ± 1.70
FAQ 0.28 ± 1.36 2.60 ± 4.18 5.18 ± 6.84 14.89 ± 7.70
ADAS 8.68 ± 4.92 12.31 ± 6.70 18.93 ± 10.79 33.01 ± 11.103

CDR, Cognitive Dementia Rating; MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory; GDS, Geriatric Depression Scale; FAQ, Functional
Activities Questionnaire; ADAS, Alzheimer’s Disease Assessment Scale.

of cognitive impairment were collected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset in the United
States. The sample consisted of 577 groups with early mild
cognitive impairment (EMCI), 409 groups with late mild cognitive
impairment (LMCI), 266 groups with AD, and 575 groups of HC
individuals. The data collection included multimodal magnetic
resonance imaging of the head, encompassing structural MRI
(sMRI) and resting-state fMRI, as well as equipment magnetic
field distribution data (field map).

The sMRI data were acquired using the following parameters:
acquisition plane = sagittal; acquisition type = 3D; coil = SENSE-
Head-8; field strength = 3.0 tesla; flip angle = 9.0 degrees; matrix
X = 256.0 pixels; matrix Y = 256.0 pixels; matrix Z = 170.0; Mfg
Model = Intera; pixel spacing X = 1.0 mm; pixel spacing Y = 1.0 mm;
pulse sequence = GR; slice thickness = 1.2 mm; TE = 3.2 ms;
TI = 0.0 ms; TR = 6.8 ms; weighting = T1.

The fMRI data were acquired with the following parameters:
field strength = 3.0 tesla; flip angle = 80.0 degrees; matrix X = 64.0
pixels; matrix Y = 64.0 pixels; Mfg Model = Intera; pixel spacing
X = 3.3 mm; pixel spacing Y = 3.3 mm; pulse sequence = GR;
slices = 6,720.0; slice thickness = 3.3 mm; TE = 30.0 ms; TR =
3,000.0 ms.

Furthermore, the field map data were acquired with the follow-
ing parameters: acquisition plane = axial; acquisition type = 3D;
coil = SENSE-Head-8; field strength = 3.0 tesla; flip angle = 10.0
degrees; matrix X = 256.0 pixels; matrix Y = 256.0 pixels; matrix
Z = 104.0; Mfg Model = Intera; pixel spacing X = 1.0 mm; pixel spac-
ing Y = 1.0 mm; pulse sequence = GR; slice thickness = 3.0 mm;
TE = 4.6 ms; TI = 0.0 ms; TR = 20.0 ms; weighting = T2.

Complex brain network modeling
A series of fMRI preprocessing methods was employed to analyze
the collected multimodal brain imaging data. The specific steps
are as follows. Firstly, the J-HCPMMP method (Sheng et al. 2019)
was utilized to register, denoise, and normalize the structural and
functional magnetic resonance data from the ADNI dataset. The
data was then transformed from native space to the Connectivity
Informatics Technology Initiative (CIFTI) space (Glasser et al. 2013;
Dickie et al. 2019; Esteban et al. 2019), resulting in 32,492 cortical
vertex coordinates for each hemisphere. Based on the HCP MMP
brain parcellation method, the cortical surface was divided into
180 brain regions for each hemisphere.

Subsequently, the HCP wb_command tool was employed to
input the time series fMRI BOLD signals from the 360 brain regions
into the proposed integrated frequency domain NC method. This
allowed for the calculation of causal associations between pairs
of brain regions, resulting in a directed causal connectivity matrix

of size 360 × 360 for each subject, representing the complex brain
network. In addition, other widely used frequency-domain causal-
ity analysis algorithms such as GC, PDC, and RPC were employed
for comparative analysis. Finally, utilizing the Brain Connectivity
Toolbox (BCT) (Rubinov and Sporns 2010), various network metrics
were computed to evaluate the connectivity and centrality of the
directed complex brain network.

Statistical significance analysis
To further analyze and compare the patterns of significant
changes in different patient groups, this study conducted a
significance analysis on the BCT topological measures calculated
in the previous section. Since the distribution characteristics
of the samples were not known, a nonparametric statistical
test, the Kruskal–Wallis’s (KW) test (van der Haar et al. 2023),
was employed. Firstly, the KW test was performed on the BCT
measures of the 360 brain regions for the four patient groups.
This analysis identified brain regions with statistically significant
P-values below the 0.05 significance level. Post hoc analysis
was then conducted to determine which brain regions exhibited
significant differences in the variation of directed causal topolo-
gies among different groups. By utilizing the Kruskal–Wallis’s
test and post hoc analysis, this study aimed to identify brain
regions where the directed causal network topologies exhibited
significant differences across the different patient groups.

Deep learning and evaluation
In addition to traditional statistical tests for variability, the study
incorporated deep learning methods. The integration of deep
learning alongside traditional statistical analyses aims primar-
ily to assess the discriminative capacity of various frequency-
domain causal analysis methods in processing functional brain
imaging data from AD patients. Specifically, this study high-
lights the superiority of the NC method from both simulated
and practical perspectives. Throughout the AD patient identi-
fication process, comparisons were conducted among different
frequency-domain causal analysis methods to extract topological
features of brain connectivity networks. Subsequently, these fea-
tures were employed to train neural network models, leveraging
the classification outcomes of the models to determine which
frequency-domain causal analysis method could more accurately
extract effective features. The use of deep learning as a validation
tool provides a more intuitive assessment of the applicability
of frequency-domain NC methods in analyzing functional brain
connectivity in AD. While statistical analysis methods often rely
on descriptors such as mean, variance, coefficient of variation,
or distribution characteristics to depict the variability of patient
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Table 2. nCAUC detection results of binary time series causal relationships (for Scenarios 1–3).

Scenario Time domain Frequency domain

GC NC GC PDC RPC Proposed

Strong 0.66 0.99 −1 0.46 −0.99 0.99
Weak −0.07 0.99 −1 0.23 −1 0.11
Balanced #1 0.01 0.99 −1 0.33 −0.99 0.90
Balanced #2 0.63 0.99 −1 0.59 −0.99 0.28

brain efficiency networks, deep learning classification results
serve as a complementary approach to further elucidate the rel-
ative merits of different frequency-domain causal methods using
intuitive metrics such as accuracy, precision, and recall.

The directed causal network topological connectivity measures
of all brain regions were used as the input features for the deep
learning’s first layer. To ensure the model’s robustness and inter-
pretability, a relatively simple deep learning network architecture
was chosen. The initial layer consisted of 360 nodes, representing
the topological measures derived from the 360 brain regions. A
normalization layer was implemented to address dimensional
discrepancies between nodes, samples, or groups. The network
comprised 16 layers with rectified linear unit (ReLU) activation
functions, each composed of 1024 nodes. To prevent overfitting, a
dropout layer with a dropout rate ranging from 20% to 50% was
inserted prior to the output layer.

Regarding data preparation, the training and testing sets were
split in a ratio of 0.8:0.2, and the dataset was randomly partitioned
for each iteration using the sklearn tool. The optimization process
employed the Adam algorithm with an initial learning rate of
0.00001, a batch size of 16, and a maximum epoch step of 800. The
deep learning model was developed using the Keras framework,
and the computations were performed on an NVIDIA GeForce RTX
4080 GPU.

To evaluate the model’s performance, the study primarily uti-
lized widely accepted evaluation metrics based on the confusion
matrix, including accuracy, sensitivity, and recall, among others.
These metrics provided insights into the classification perfor-
mance of the model.

Results
Table 2 presents the results of nCAUC analysis for scenarios
1–3. In scenario 1 (Strong), both the GC and NC methods in the
time domain successfully detect the causal influence of Xt on Yt.
However, in the frequency domain, the GC and RPC methods yield
incorrect results. The PDC method and the integrated NC theory
proposed in this study provide accurate causal directions in fMRI
data analysis. Figure 7 illustrates the nCAUC causal analysis
curve for scenario 1. In this figure, the red curves in all subplots
represent the results that align with the simulation model truth,
which corresponds to the true causal direction Xt → Yt. The
results observed in Fig. 7 are consistent with those presented in
Table 2.

For scenario 2 (Weak), in the time domain calculations, the
GC method yields negative values, suggesting that the causal
influence of Yt on Xt is greater than that of Xt on Yt. This con-
tradicts the mathematical definition in this simulation. However,
the NC method accurately detects the correct causal direction.
In the frequency domain calculations, the GC and RPC methods
produce incorrect conclusions, while the PDC method and the

proposed method in this study yield correct results. Although the
proposed method may exhibit lower sensitivity compared to PDC
in numerical terms, it reveals a limitation that it can only qualita-
tively detect the causal direction and cannot provide quantitative
analysis. Figure 8 illustrates the nCAUC causal analysis curve for
scenario 2. In this figure, the red curves in all subplots align with
the simulation truth, indicating the true causal direction Xt → Yt.

For scenario 3 (balanced #1, #2), in the time domain, both
the GC and NC methods can detect the correct causal direction.
However, in the frequency domain, the GC and RPC methods
yield incorrect conclusions. Similarly, the PDC method and the
proposed method in this study accurately detect the true causal
direction Xt → Yt. Figures 9 and 10 depict the nCAUC causal
analysis curves for scenario 3. In these figures, the red curves in
all subplots align with the simulation truth, indicating the true
causal direction Xt → Yt. These results are consistent with the
calculations presented in Table 2 (scenario: balanced).

Table 3 displays the nCAUC causal analysis results for scenario
4. According to the modeling Equation (7), the true causal direc-
tions are determined to be Xt → Yt, Xt → Zt, and Zt → Yt.
In the time domain calculations, it is observed that both the
GC and NC methods provide similar and accurate conclusions.
Notably, the integrated NC method demonstrates the highest
value of 1, emphasizing its effectiveness. However, in the fre-
quency domain calculations, while the PDC method accurately
identifies the causal directions Xt → Yt and Xt → Zt, it fails to
correctly determine the causal direction Yt → Zt. Conversely, both
the RPC and GC methods exhibit fundamental errors in discerning
the causal relationships in the Xt → Yt and Xt → Zt pairs. On
the other hand, the NC method in the frequency domain yields
correct conclusions, aligning with the simulation model. Figure 11
illustrates the nCAUC causal analysis curves for scenario 4. The
red curves in all subplots are in agreement with the simulation
truth, indicating the true causal directions Xt → Yt, Xt → Zt,
and Yt → Zt. The results of the analysis are consistent with those
presented in Table 3.

Table 4 presents the nCAUC causal analysis results for scenario
5. In the time domain calculations, both the GC and NC methods
accurately detect the three sets of causal influence directions:
Xt → Yt, Xt → Zt, and Yt → Zt. However, in the frequency domain,
the RPC method and GC method yield results that contradict the
simulation truth, particularly the GC method, which completely
misidentifies the causal directions. On the other hand, the PDC
method and the proposed method in this study provide cor-
rect conclusions. Figure 12 illustrates the nCAUC causal analysis
curves for scenario 5. The red curves in all subplots align with the
simulation truth, indicating the true causal directions Xt → Yt,
Xt → Zt, and Yt → Zt. These results are consistent with the
calculations presented in Table 4.

Fig. 13 shows the performance of the four frequency-domain
causal analysis methods when their computed interregional
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Fig. 7. Strong causal detection results for binary time series. Subplots A and B depict the detection results in the time domain using the GC and NC
methods, respectively. The X-axis represents the lag factor. Subplots C–F correspond to the detection results in the frequency domain using the GC, PDC,
RPC, and the proposed causal calculation method in this study. The X-axis represents the normalized frequency spectrum.

Table 3. nCAUC causal analysis results for multivariate time series (corresponding to scenario 4, cyclic causality).

Method Xt → Yt Xt → Zt Yt → Zt

Time domain GC 0.75 0.93 −0.23
NC 1.00 1.00 −0.60

Frequency domain PDC 0.23 0.33 0.04
RPC −1.00 −1.00 −1.00
GC −1.00 −1.00 −1.00
Proposed 1.00 1.00 −0.69

causal values are fed into a deep learning model. From top to
bottom, the figure corresponds to GC, PDC, RPC, and the proposed
method in this study. On the left side, the model training curves
are displayed, with the y-axis representing training accuracy.

On the right side, the curves represent the variation of model
error, with the y-axis indicating the loss computed using the
binary cross-entropy loss function from the Keras development
framework.
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Fig. 8. Weak causal detection results for binary time series.

Table 4. nCAUC causal analysis results for multivariate time series (corresponding to scenario 5, transitive causality).

Method Xt → Yt Xt → Zt Yt → Zt

Time domain GC 0.36 1.00 1.00
NC 1.00 1.00 1.00

Frequency domain PDC 0.14 0.94 0.90
RPC −0.80 1.00 −0.94
GC −1.00 −0.81 −0.94
Proposed 0.44 1.00 1.00

From the figure, it can be observed that the proposed causal
analysis method exhibits slower convergence in the model, reach-
ing its peak around 300–400 epochs (HC vs. LMCI group, repre-
sented by the red curve). On the other hand, the other three causal
analysis methods achieve their highest training accuracy, close
to 100%, at around 100 epochs in different binary classification

groups. However, it is still necessary to determine the true perfor-
mance of the model by evaluating its accuracy on a separate test
dataset.

Table 5 and Fig. 14 present the testing performance. In the
six groups of binary classification, this study computed three
evaluation metrics: accuracy, precision, and recall. In terms of
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Fig. 9. Causal detection results for binary time series (balanced #1, γ = 0.1).

classification accuracy, the proposed method in this study demon-
strates the best performance among all binary classification sce-
narios. The highest accuracy score is achieved in the HC vs. AD
group, with an accuracy of 0.817. This is followed by the EMCI
vs. AD group with 0.763, HC vs. LMCI group with 0.726, EMCI
vs. LMCI group with 0.720, LMCI vs. AD group with 0.719, and
HC vs. EMCI group with 0.697. The other three methods yield
subpar performance in the classification models, significantly
lower than the proposed method in this study. Regarding precision
and recall, the proposed method also achieves the highest values
in the majority of cases. The only exception is in the HC vs. LMCI
group, where the precision for the PDC method is 0.719 compared
to 0.710 for the proposed method, and the recall for the PDC
method is 0.656 compared to 0.627 for the proposed method. In
the EMCI vs. LMCI group, the precision for the PDC method is 0.808,
while the proposed method achieves a precision of 0.800. Overall,

the proposed method demonstrates outstanding performance in
most scenarios.

To further compare and analyze the testing performance, this
study presents the confusion matrix in Fig. 15. The matrix specifi-
cally highlights the model’s performance on each individual clas-
sification. For instance, in the bottom-right corner of the matrix,
corresponding to the proposed method in this study, the labels
A–F represent the six binary classification results: HC vs. EMCI,
HC vs. LMCI, HC vs. AD, EMCI vs. LMCI, EMCI vs. AD, and LMCI vs.
AD. Taking label A as an example, in the actual dataset, there are
a total of 120 samples of HC and 111 samples of individuals with
EMCI. The numbers on the green diagonal represent the cases
where the model’s predictions match the actual values. In this
case, out of the 120 samples of HC, the model correctly identifies
78 samples as healthy (0.65), while out of the 111 samples of
EMCI, the model correctly identifies 83 samples (0.74). Therefore,
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Fig. 10. Causal detection results for binary time series (balanced #2, γ = 0.01).

Table 5. Model testing performance.

HC vs. EMCI HC vs. LMCI HC vs. AD EMCI vs. LMCI EMCI vs. AD LMCI vs. AD

Accuracy GC 0.498 0.548 0.651 0.556 0.716 0.659
PDC 0.649 0.726 0.751 0.662 0.751 0.667
RPC 0.554 0.604 0.651 0.596 0.639 0.556
Proposed 0.697 0.726 0.817 0.720 0.763 0.719

Precision GC 0.474 0.493 0.717 0.375 0.734 0.659
PDC 0.714 0.719 0.817 0.554 0.808 0.677
RPC 0.468 0.539 0.701 0.547 0.697 0.588
Proposed 0.736 0.710 0.822 0.707 0.800 0.745

Recall GC 0.500 0.398 0.798 0.333 0.903 0.831
PDC 0.620 0.656 0.831 0.485 0.836 0.823
RPC 0.531 0.409 0.826 0.407 0.825 0.740
Proposed 0.650 0.627 0.950 0.616 0.869 0.833
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Fig. 11. Simulation of cyclic causal relationships in multivariate causality (corresponding to scenario 4, cyclic causality).

the average classification accuracy for the HC vs. EMCI group
is 0.69.

Based on previous research (Wang et al. 2022), the Page Rank
Centrality (PC) measure has demonstrated outstanding perfor-
mance in classification tasks. In this study, it was also computed

and analyzed. The KW nonparametric test revealed significant
differences among the classification groups in a total of 63 subre-
gions in the left cerebral cortex and 52 subregions in the right cere-
bral cortex. Further analysis was conducted using post hoc tests,
and the detailed statistical findings are presented in Tables 6-11.
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Fig. 12. Simulation of transitive causal relationships in multivariate causality (corresponding to scenario 5, transitive causality).

Table 6 provides the results of the significance difference tests
for PC values between the HC and EMCI groups. Among the left
cerebral cortex regions, 25 brain regions, and among the right
cerebral cortex regions, 21 brain regions exhibited P-values below

the significance level of 0.05. Notably, four brain regions, specifi-
cally the 3a, PEF, V4t, and STGa regions defined by the HCP MMP,
displayed significant differences in both the left and right cerebral
cortex between the EMCI and HC groups.
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Fig. 13. Training curves (left) and error variation (right) for four frequency domain causal analysis methods.

Table 7 presents the results of the significance difference tests
for PC values between the LMCI group and the HC group. In the left
cerebral cortex, 21 brain regions, and in the right cerebral cortex,
10 brain regions exhibited P-values below the significance level
of 0.05. Notably, five brain regions, namely, the OFC (orbitofrontal

cortex), V3B, 3a, V1, and 45 regions defined by the HCP MMP,
showed significant differences in both the left and right cerebral
cortex between the LMCI and HC groups.

Table 8 presents the results of the significance difference tests
for PC values between the AD group and the HC group. In the left
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Fig. 14. Model testing results.

Table 6. Distribution of significantly different brain regions and P-values for HC vs. EMCI.

Area P-value Area P-value Area P-value

L-4 0.003 L_3b 0.005 L_FEF 0.003
L_PEF 0.012 L_55b 0.034 L_MT 0.045
L_1 0.003 L_2 0.026 L_3a 0.000
L_6mp 0.015 L_10r 0.001 L_8Av 0.012
L_8BL 0.024 L_8C 0.004 L_IFJa 0.004
L_IFJp 0.003 L_6a 0.015 L_STGa 0.018
L_STSda 0.018 L_PH 0.011 L_TPOJ2 0.012
L_PGs 0.027 L_V6A 0.031 L_V4t 0.031
L_TE1m 0.010 R_V1 0.024 R_PEF 0.021
R_POS2 0.007 R_V3B 0.000 R_PIT 0.049
R_7Am 0.024 R_3a 0.031 R_a47r 0.005
R_a10p 0.004 R_OP1 0.001 R_RI 0.014
R_Pir 0.002 R_AAIC 0.027 R_FOP1 0.016
R_AIP 0.012 R_STGa 0.022 R_TE1a 0.005
R_TF 0.006 R_V4t 0.040 R_pOFC 0.048
R_p24 0.037

cerebral cortex, 25 brain regions, and in the right cerebral cortex,
19 brain regions exhibited P-values below the significance level
of 0.05. Notably, eight brain regions, namely, the 47l, 47s, 7Pm,

Pol2, V1, STSda, TE1m, and pOFC regions defined by the HCP MM,
showed significant differences in both the left and right cerebral
cortex between the AD and HC groups.
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Fig. 15. Confusion matrix.

Table 7. Distribution of significantly different brain regions and P-values for HC vs. LMCI.

Area P-value Area P-value Area P-value

L_V1 0.020 L_MST 0.002 L_4 0.029
L_V3B 0.011 L_MT 0.045 L_3a 0.001
L_8Av 0.03 L_8BL 0.004 L_9p 0.007
L_44 0.012 L_45 0.001 L_47l 0.017
L_IFJa 0.009 L_IFSp 0.003 L_p946v 0.013
L_OFC 0.014 L_AAIC 0.002 L_STSda 0.016
L_TPOJ2 0.012 L_IP0 0.003 L_TGv 0.007
R_V1 0.023 R_POS2 0.007 R_V3B 0.000
R_1 0.011 R_3a 0.031 R_47m 0.029
R_45 0.011 R_OFC 0.007 R_AIP 0.001
R_V4t 0.040

Table 9 presents the results of the significance difference tests
for PC values between the EMCI group and the LMCI group.
The table shows the distribution of significantly different brain
regions and their corresponding P-values. In the left cerebral
cortex, 10 brain regions, and in the right cerebral cortex, 11 brain
regions exhibited P-values below the significance level of 0.05.
Notably, four brain regions, namely, the TE2a, AAIC, 45, and oOFC
regions defined by the HCP MMP, showed significant differences
in both the left and right cerebral cortex between the EMCI and
LMCI groups. These findings suggest that these brain regions may

play a role in distinguishing between early and late stages of mild
cognitive impairment.

Table 10 presents the results of the significance difference
tests for PC values between the EMCI group and the AD group.
The table shows the distribution of significantly different brain
regions and their corresponding P-values. In the left cerebral
cortex, 19 brain regions, and in the right cerebral cortex, 26 brain
regions exhibited P-values below the significance level of 0.05.
Notably, two brain regions, namely, the FOP2 and pOFC regions
defined by the HCP MMP, showed significant differences in both
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Fig. 16. Distribution of statistical differences in brain regions.

Table 8. Distribution of significantly different brain regions and P-values for HC vs. AD.

Area P-value Area P-value Area P-value

L_V1 0.020 L_V6 0.043 L_4 0.041
L_MT 0.045 L_7Pm 0.001 L_POS1 0.006
L_v23ab 0.037 L_31pv 0.038 L_1 0.016
L_2 0.029 L_45 0.031 L_47l 0.017
L_IFJp 0.016 L_p946v 0.031 L_47s 0.031
L_Pol2 0.002 L_AVI 0.006 L_AAIC 0.028
L_PFt 0.007 L_STSda 0.016 L_PGs 0.000
L_V6A 0.011 L_31pd 0.014 L_pOFC 0.024
L_TE1m 0.001 R_V1 0.024 R_V3A 0.021
R_POS2 0.007 R_V7 0.016 R_V3B 0.000
R_7Pm 0.006 R_7m 0.038 R_1 0.011
R_47l 0.007 R_OFC 0.001 R_47s 0.026
R_Pol2 0.012 R_STGa 0.001 R_STSda 0.019
R_TE1p 0.000 R_TE2a 0.005 R_TF 0.020
R_pOFC 0.000 R_TE1m 0.019

Table 9. Distribution of significantly different brain regions and P-values for EMCI vs. LMCI.

Area P-value Area P-value Area P-value

L_55b 0.034 L_5L 0.015 L_6mp 0.006
L_10r 0.000 L_9p 0.032 L_45 0.004
L_OP4 0.008 L_AAIC 0.028 L_pOFC 0.021
L_TGv 0.015 R_PEF 0.000 R_PIT 0.001
R_47m 0.011 R_45 0.001 R_OP1 0.008
R_Pir 0.002 R_AAIC 0.027 R_TE1p 0.013
R_TF 0.018 R_pOFC 0.003 R_p24 0.038
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Table 10. Distribution of significantly different brain regions and P-values for EMCI vs. AD.

Area P-value Area P-value Area P-value

L_FEF 0.030 L_PEF 0.006 L_55b 0.034
L_7Pm 0.001 L_d23ab 0.010 L_3a 0.017
L_10r 0.000 L_IFJa 0.004 L_IFJp 0.000
L_11l 0.017 L_Pol2 0.044 L_AVI 0.006
L_FOP2 0.005 L_TE2a 0.024 L_TF 0.01
L_TPOJ2 0.038 L_31pd 0.023 L_pOFC 0.002
L_a32pr 0.036 R_PEF 0.000 R_V7 0.016
R_PIT 0.049 R_PCV 0.025 R_7Pm 0.015
R_7Am 0.023 R_OFC 0.022 R_47s 0.009
R_OP4 0.001 R_OP1 0.027 R_Pir 0.028
R_FOP2 0.031 R_PFt 0.014 R_AIP 0.010
R_A5 0.017 R_STSda 0.035 R_TE1a 0.013
R_TE1p 0.000 R_TE2a 0.008 R_TF 0.000
R_VVC 0.020 R_pOFC 0.000 R_Ig 0.031
R_STSva 0.001 R_TE1m 0.004 R_p24 0.038

Table 11. Distribution of significantly different brain regions and P-values for LMCI vs. AD.

Area P-value Area P-value Area P-value

L_31pv 0.041 L_IFJa 0.008 L_IFJp 0.003
L_OP4 0.008 L_Pol2 0.019 L_TPOJ2 0.038
L_TE1m 0.005 R_7Pm 0.049 R_45 0.011
R_Pol2 0.012 R_FOP2 0.031 R_AIP 0.001
R_STGa 0.003 R_STSda 0.019 R_TE1p 0.006
R_TF 0.018 R_VMV1 0.033 R_pOFC 0.014
R_Pol1 0.003 R_STSva 0.010 R_TE1m 0.005

To visualize the results, Fig. 16 maps the brain regions and their corresponding P-values from Tables 6–11 onto a brain model. The intensity of the color in the
mapping indicates the significance level, with darker colors representing smaller P-values and more pronounced differences.

the left and right cerebral cortex between the EMCI and AD
groups.

Table 11 presents the results of the significance difference tests
for PC values between the LMCI group and the AD group. The table
shows the distribution of significantly different brain regions and
their corresponding P-values. In the left cerebral cortex, 7 brain
regions, and in the right cerebral cortex, 14 brain regions exhibited
P-values below the significance level of 0.05. Notably, two brain
regions, namely, the Pol2 and TE1m regions defined by the HCP
MMP, showed significant differences in both the left and right
cerebral cortex between the LMCI and AD groups.

Discussion
Contributing to revealing causal direction in
complex time series models
This study initially simulated mathematical models of varying
degrees of causal associations in binary and multivariate time
series. It integrated the frequency domain NC research method
and introduced the nCAUC metric to assess the performance of
multiple methods. In the case of binary variables (scenarios 1–3),
the time-domain GC method was generally able to correctly detect
causal associations consistent with the mathematical models.
However, in the scenario of weak associations (scenario 2), it
exhibited inconsistencies with the ground truth. Both frequency
domain GC and RPC methods provided erroneous results across
all scenarios, while the PDC and NC methods yielded accurate
conclusions. Further analysis of Fig. 7 (scenario 1, strong causal-
ity) revealed that the PDC method exhibited significant fluctua-
tions in the computed causal values as the frequency varied along
the X-axis. Overall, both time-domain and frequency-domain NC

methods demonstrated strong discriminative capability. In the
time-domain results (Fig. 7B), the causal influence of variable X on
Y persisted across all lag values, with a more pronounced causal
direction observed as the lag increased. In the frequency domain
results (Fig. 7F), it was evident that the causal impact of vari-
able X on Y primarily concentrated in the low-frequency region,
which was consistent with the observations in Figs 9 and 10.
In the defined scenario by Equation (5), the influence of past
values of variable X on Y was 10 times smaller compared to the
influence of Y’s own past values. Such a weak causal association
posed challenges for all four methods (as visualized in Fig. 8, the
visual discriminative power between the two causal directions
was limited). However, by considering the nCAUC metric, the
causal impact of X on Y could still be accurately detected.

In the case of complex multivariate causal models, the PDC
method in the cyclic causal model (scenario 4) no longer provides
reliable detection results and yields incorrect conclusions regard-
ing the relationship between time series Y and Z. Similar issues
have also been raised by Khan et al. (2023), who, through synthetic
and real EEG data, identified potential erroneous results in the
extraction of brain effective networks using the PDC method.
However, the integrated NC methods, both in the time domain
and frequency domain, consistently indicate that the true causal
direction is from Z to Y. In the transitivity causal model, although
time series X does not directly influence Z, the integrated NC
methods can still accurately perceive this relationship. By com-
bining the information from Table 4 and Fig. 12, it is possible
to infer the causal impact of X on Z. In summary, through the
simulation of fMRI BOLD signals, the integration of frequency-
domain NC methods contributes to revealing causal direction in
complex time series models. Given the weak and indirect nature of

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/5/bhae195/7668685 by U

niversity of C
alifornia, San Francisco user on 02 June 2024



18 | Cerebral Cortex, 2024, Vol. 34, No. 5

causal associations among brain regions, the proposed approach
holds promise for significant applications in the processing of real
fMRI data.

Contributing to enhancing performance of
cognitive impairment prediction models at
different severity levels
This study utilized directed binary causal connectivity to char-
acterize the associations between different brain regions in a
complex brain network. Additionally, the directed centrality of
the 360 cortical parcels from the HCP MMP method was used
as the input layer for deep learning, which was then trained.
The chosen deep learning model had a simple structure and a
small number of parameters, facilitating reproducibility of the
results and establishing a baseline for the integrated frequency-
domain NC method. Some studies (Alfakih et al. 2023; Xia et al.
2024) have designed more complex neural network structures to
achieve higher classification performance. However, this study
focuses on the applicability of frequency-domain causal analysis
methods in AD diagnosis, thus avoiding the use of complex neural
networks. In subsequent research, adjustments to the neural
network’s structure and optimization of parameters will indeed
further enhance the model’s performance.

From Fig. 13, it can be observed that all four causal analysis
methods compared in this study were able to complete the train-
ing within 100 epochs, although the proposed method exhibited
slower convergence and required nearly 300 iterations to converge
in the HC vs. LMCI group. Nevertheless, all methods achieved
training accuracy levels close to 100%. This phenomenon suggests
that the models may have encountered severe overfitting issues,
as mentioned in other studies (Buvaneswari and Gayathri 2023;
Mujahid et al. 2023; Shamrat et al. 2023). Therefore, further analy-
sis incorporating test performance (Table 5, Fig. 14) and confusion
matrices (Fig. 15) is necessary to evaluate the performance of each
method more specifically (Nancy Noella and Priyadarshini 2023;
Arafa et al. 2024).

In the test results (Table 5), the integrated frequency-domain
NC method demonstrated significantly superior performance in
terms of accuracy, precision, and recall compared to the other
three methods. Among the specific group predictions, the HC
vs. AD group achieved the highest accuracy of 81.7%. This was
followed by the EMCI vs. AD and HC vs. EMCI groups, while the
lowest accuracy was observed in the HC vs. EMCI group, which
was only 69.7%. Despite this, the accuracy was still nearly 20
percentage points higher than the binary baseline, indicating
that the complex brain network topological features extracted
by the integrated frequency domain NC method contribute to
enhancing the performance of the deep learning model. This
finding is consistent with our previous research (Wang et al. 2023).
Furthermore, the high accuracy of the AD group compared to
the other three groups indicates the significant characteristics of
brain connectivity changes in AD patients. The lower accuracy
in the HC vs. EMCI group may be attributed to less pronounced
brain connectivity changes between these two groups, making
it challenging to identify mild cognitive impairment at an early
stage from the healthy control group (Veluppal et al. 2022; Shaji
et al. 2023).

Consistent significance of brain region causal
associations as potential biomarkers for AD
analysis
The integrated frequency-domain NC analysis method of fMRI
signals revealed consistent and significant differences in multiple

newly defined brain regions within the HCP MMP cortical atlas
among individuals with varying degrees of cognitive impairment.
These findings can be further investigated as potential biomark-
ers for AD. Statistical analysis was performed to examine the
NC causal values in the frequency domain between fMRI BOLD
signals of different brain regions using the HCP MMP method. The
names of these brain regions and their corresponding P-values
are listed in Tables 6-11. It is evident that many brain regions
exhibited significant differences across various groups. These
include well-established brain regions that align with findings
from previous research, such as the Primary Motor Cortex (Area
4), Primary Sensory Cortex (Area 1), Primary Visual Cortex (Area
V1), and Lateral Temporal Cortex (Area TF), which are closely
associated with motor, planning, perception, visual, and auditory
activities (Ravikumar et al. 2021; Du et al. 2023; Yan et al. 2023;
Zhang, Zhang, et al. 2023a). Additionally, several multimodal sub-
regions were discovered for the first time using the HCP MMP
method, such as Area STSd anterior (STSda) (Sheng et al. 2023),
Area TE1 Middle (TE1m) (Zhao et al. 2021), Medial Area 7P (7Pm)
(Kitzbichler et al. 2021), and Anterior Agranular Insula Complex
(AAIC) (Sheng et al. 2021). These findings provide valuable insights
into characterizing brain region variations at a finer granularity,
building upon previous AD research.

Figure 17 illustrates the brain regions with significant differ-
ences that appeared in at least two pairwise comparisons and
maps them onto the brain model. Among them, the pOFC (pos-
terior orbitofrontal cortex) region exhibited the highest number
of statistical differences, appearing in the right hemisphere of the
HC vs. EMCI group, bilateral hemispheres of the HC vs. AD group,
bilateral hemispheres of the EMCI vs. LMCI group, bilateral hemi-
spheres of the EMCI vs. AD group, and the right hemisphere of
the LMCI vs. AD group, totaling eight occurrences. This consistent
significance, observed across five out of six pairwise comparisons,
establishes a consistent pattern of significant differences. While
no statistical differences were detected in the HC vs. LMCI group,
the pOFC region exhibited statistical differences in the remaining
five pairwise comparisons. Table 12 presents the distribution of
brain regions with occurrence frequencies greater than or equal
to four.

Limitations
This study has several limitations. Firstly, the integrated
frequency-domain NC method used to analyze fMRI signals has a
significantly higher computational complexity compared to other
commonly used methods. Both the definition of NC values and
the computation time may pose challenges for its widespread
application. Similar observations have been made in the field of
deep learning, where the convergence speed of frequency-domain
NC is relatively slower compared to other research methods.
Causality values computed proportionally range from 0 to 1,
leading to larger result variances and stronger fluctuations,
as observed in Figs 7–12. Consequently, this may affect the
convergence speed of deep learning, especially when utilizing the
Adam optimization method, which adjusts the learning rate using
estimates of first and second moments. Differential computations
in the 0–1 proportional results could be challenging, with a risk
of gradient vanishing. Therefore, in future studies, we will also
consider exploring other deep learning parameter optimization
methods to improve model convergence speed.

Secondly, the integrated frequency-domain NC method has
only been experimented with in binary classification problems.
Currently, there is no well-defined solution for generalizing this
method to multi-class scenarios (Mehmood et al. 2020) to meet
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Fig. 17. Consistent significant differences in brain regions.

the requirements of higher classification prediction. Even for
binary classification, the classification accuracy obtained in this
study is numerically lower compared to other similar studies
(Hussain et al. 2020; Tufail et al. 2020; Prajapati et al. 2021). Pre-
vious research using correlation matrix methods for calculating
undirected binary or weighted complex brain networks (Sheng
et al. 2019, 2021, 2022) achieved classification accuracies of over
90%. However, these studies had a very limited sample size of only
around 100. The better classification performance, apart from
the accuracy of the feature engineering measure itself, is more
likely due to severe overfitting caused by the limited sample size.
This can be observed in Fig. 13, where even though the training
accuracy reaches 100%, the model’s actual performance is subpar.
Therefore, it is crucial to collect a larger dataset of individuals
with cognitive impairment to enrich the model training, valida-
tion, and testing processes. This is a key aspect of leveraging
artificial intelligence technologies in cognitive impairment iden-
tification research (An et al. 2020).

Conclusion
In conclusion, the frequency-domain NC method presented in this
research demonstrates its effectiveness in constructing directed
efficiency networks, providing valuable insights into the com-
plex relationships between brain regions and cognitive function.
Through simulations of different degrees of causal associations
and statistical analyses of brain networks in individuals with
varying degrees of cognitive impairment, the effectiveness of
the frequency-domain NC method has been demonstrated. Com-
parative analyses with three commonly used frequency-domain
causality analysis methods, GC, RPC, and PDC, have revealed
limitations in their detection capabilities. GC and RPC methods
often yielded results that deviated from the ground truth, while
the PDC method was inadequate for capturing cyclic causality,
possibly a prevalent form of connectivity in the brain. Further-
more, the outcomes of deep learning tests consistently show-
cased the superior performance of the frequency-domain NC
method. Its classification metrics surpassed those of the other
methods, emphasizing its efficacy in accurately characterizing
brain connectivity patterns. Moreover, leveraging the multimodal
brain parcellation method HCP MMP, significant and consistent
differences were observed. These findings highlight the substan-
tial association between fine-grained cortical subregions obtained
through multimodal data segmentation and human cognitive
function. These subregions hold promise as potential biomarkers
for further investigation into AD.
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